Journal of Organometallic Chemistry, 90 (1975) 13-22
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THIO- UND SELENOBORSAUREN

WALTER SIEBERT*, EDUARD GAST, FRIEDRICH RIEGEL und MAX SCHMIDT Institut für Anorganische Chemie der Universität Wurzburg (B.R.D.) (Eingegangen den 28. Oktober 1974)

Summary

The preparation of thio- and seleno-boric acids R_2BXH (X = S, Se) from haloboranes and hydrogen chalcogenides is described. At elevated temperatures the diorganylthioboric acids cleave off hydrocarbons to yield borthiins. Besides, elimination of H_2S is observed which stems from the formation of diborylsulfanes, $R_2B-S-BR_2$. However, these compounds rearrange to borthiins and triorganylboranes. In contrast to R_2BSH , the cyclic thioboric acids easily loose H_2S to form thermally stable diborylsulfanes, $R_2B-S-BR_2$.

Zusammenfassung

Die Darstellung von Thio- und Selenoborsäuren R₂BXH (X = S, Se) aus Halogenboranen und Chalkogenwasserstoffen wird beschrieben. Bei erhöhter Temperatur spalten die Diorganylthioborsäuren Kohlenwasserstoffe ab, wodurch Borthiine entstehen. Daneben wird auch H₂S-Eliminierung beobachtet, die von der Bildung von Diborylsulfanen, R₂B-S-BR₂, herrührt. Diese Verbindungen lagern sich jedoch in Borthiine und Triorganylborane um. Im Gegensatz zu R₂BSH geben die cyclischen Thioborsäuren leicht H₂S ab und bilden thermostabile Diborylsulfane, R₂B-S-BR₂.

Einleitung

Zu Beginn dieses Jahrhunderts haben Stock und Mitarbeiter [1] die Thiolyse von Trihalogenboranen untersucht. Die Reaktionsprodukte, von Stock als $B_2S_3 \cdot BX_3$ (X = Cl, Br) formuliert, wurden erst fünf Jahrzehnte später von Wiberg und Sturm [2] als Derivate des sechsgliedrigen Ringsystems Borthiin ("Borsulfol") erkannt. Mit überschüssigem Schwefelwasserstoff reagieren die Halogenborthiine langsam zur Metathioborsäure (Gl. 1).

^{*} Fachbereich Chemie der Universität Marburg (B.R.D.).

$$3H_2S + 3BX_3 \stackrel{-6HX}{\longleftarrow} (XBS)_3 \stackrel{3H,S}{\longleftarrow} (HS-BS)_3 + 3HX$$
 (1)

Die von Wiberg [3] postulierten Primärprodukte der Thiolyse von Halogenboranen, X₂BSH (X = Cl, Br), konnten kürzlich, ebenso wie XB(SH)₂ und B(SH)₃, von Bouix und Hillel [4] mit Hilfe von IR-, massenspektroskopischen und ¹¹B-NMR-Untersuchungen nachgewiesen, jedoch nicht isoliert werden, da leicht Cyclisierung zu (XBS)₃ oder (HS-BS)₃ unter HX- oder H₂S-Abspaltung eintritt. Umsetzungen von Trihalogenboranen mit Selenwasserstoff [5,6] führen über die ebenfalls spektroskopisch identifizierten Zwischenprodukte [7] X₂BSeH und XB(SeH)₂ zu polymerem (XBSe)_n. Die Bildung der zu B(SH)₃ analogen Triselenoborsäure, B(SeH)₃, konnte nicht nachgewiesen werden.

Mikhailov und Bubnov [8] berichteten erstmals über zwei relativ thermostabile Dialkylthioborsäuren, R₂BSH, die oberhalb 180° unter H₂-, H₂S-, Alkan- und Alken-Bildung in nicht näher charakterisierte Organobor—Schwefel-Verbindungen übergehen. Im Gegensatz dazu spaltet die Metathioborsäure schon unter milden Reaktionsbedingungen Schwefelwasserstoff ab, wobei durch B—S—B-Verknüpfung polymeres Dibortrisulfid entsteht [2].

Ziel unserer Untersuchungen auf dem Gebiet der Thio- und Selenoborsäuren ist die Klärung der Stabilitätsverhältnisse im Hinblick auf die Chalkogenwasserstoff-Eliminierung. Damit soll zugleich ein Beitrag zur Chemie der kettenförmigen Diborylchalkogen-Systeme, R₂B S BR₂ [9,10] und R₂B Se-BR₂ [11], geliefert werden.

Ergebnisse

Darstellung

Die einfachste aus der Reihe der Dialkylthioborsäuren, (CH₃)₂BSH, wurde von Vahrenkamp [10] durch Spaltung einer Bor-Mercaptan-Bindung mit H₂S bei erhöhter Temperatur synthetisiert und als Brönsted-Säure (Gl. 2 und 3) zum

$$(CH3)2BSC6H5 + H2S \xrightarrow{150^{\circ}} (CH3)2BSH + C6H5SH$$
 (2)

$$(CH_3)_2BSH + R'X + R_3N \rightarrow (CH_3)_2BSR' + R_3N \cdot HX$$
 (3)

Aufbau neuer Thiodimethylborane $(CH_3)_2BSR'$ (z. B. R' = $(CH_3)_3Sn$) eingesetzt. Die Synthese über Diorganyl-(organylthio)borane [8] stellt einen Umweg dar, da Diorganylhalogenborane R_2BX (X = Br, J) sowie cyclische Halogenborane auch direkt mit Chalkogenwasserstoff zu den gewünschten Thio- und Selenoborsäuren in befriedigenden Ausbeuten reagieren [12,13,14] (Gl. 4-6)

$$R_2BJ + H_2S \rightarrow R_2BSH + HJ \tag{4}$$

$$R_2BJ + H_2Se \rightarrow R_2BSeH + HJ$$
 (5)

Zwei weitere Darstellungsmöglichkeiten seien hier noch erwähnt, die jedoch

Verbindung	Sdp. (°C/mm)	Ausb. (%)	ν(X-H) (cm ⁻¹)	Chemische Verschiebung ^a für X—H, δ(ppm)
(CH ₃),BSH	25	62	2590 vw [24]	-2.50(S) ^b
(C,H,),BSH	88-89	30	2570 vw	-2.60(S)
(C,H,),BSH	50/11	68		-2.61(S)
(C,H,),BSH	21/1	91	2572 vw	-2.60(S)
(C ₆ H ₅) ₂ BSH	86-87/0.1	68	2565 w	-2 83(S)
o-CaH4O2BSH	37/0.1	57	2570 vs	-1.55(9 Hz)
o-C ₆ H ₄ S ₇ BSH	62 -6 3/1	43	2554 vs	-2.47(4 Hz)
(CH,S),BSH	28/0.1	81	2530 vs	-2.72(10 Hz)
HSe H			2345 [26]	+1.06(S) [28]
(CH ₃) ₂ BSeH	46	44	2310	-0.36(S)
(C,H,)_BSeH	80/12	72		-0.40(S)
(C,H,),BSeH	81/0.1	54	2315	-0.96(S)

TABELLE 1
PHYSIKALISCHE DATEN VON THIO- UND SELENOBORSÄUREN

präparativ keine Rolle spielen. Durch Spaltung von Diboryldisulfanen [9] mit Schwefelwasserstoff werden schon bei Raumtemperatur Dialkylthioborsäuren gebildet, während für die Umsetzung von R₃B mit H₂S erhöhte Temperaturen erforderlich sind. Trimethylboran reagiert mit H₂S bei 280° zu CH₄ und B₂S₃ [15].

Eigenschaften

Die in Tabelle 1 aufgeführten Thioborsäuren lassen sich aufgrund der unterschiedlichen thermischen Stabilität in zwei Gruppen einteilen. Diorganylsubstituierte R₂BSH-Verbindungen spalten erst oberhalb 150° H₂S ab, während die cyclischen Verbindungen (incl. (HS-BS)₃ und (HSB)₂S₃ [13]) mit Heteroatomen (O oder S) am Bor schon bei Raumtemperatur oder wenig darüber unter H₂S-Austritt zu monomeren Diborylsulfanen [9,16] oder polymeren B₂S₃ bzw. B₂S₄ [13] kondensieren.

2
$$OBSH - H_2S$$
 $OB-S-B$ (7)
2(HS-BS)₃ \rightarrow 3(B₂S₃) + 3H₂S (8)

In diesem Zusammenhang sei erwähnt, dass die Umkehrung der Reaktion nach Gl. 8 bei 800° möglich ist und eine günstige Synthese für die Metathioborsäure darstellt [17].

Die Thermolyse von R₂BSH (R = Alkyl, Aryl) läuft nicht einheitlich ab, da es neben einer H₂S-Abspaltung bevorzugt zur Bildung von RH kommt. Das dabei nach Gl. 9 gebildete Diborylsulfan ist unter den Reaktionsbedingungen nicht stabil und geht in Triorganylboran, R₃B, und Triorganylborthiin, (RBS)₃, über (Gl. 11).

a Gegen ext. TMS in CS, vermessen. b in CCl.

$$2R_2BSH \xrightarrow{\Delta} [R_2B-S-BR_2] + H_2S$$

$$2/3(RBS)_3 + 2RH$$
(10)

$$3[R2B-S-BR2] \stackrel{\triangle}{\rightarrow} (RBS)_3 + 3BR_3 \tag{11}$$

Da Thioborsäuren zwei elektrophile Zentren besitzen, bestehen bei Umsetzungen mit nucleophilen Agenzien zwei Reaktionsmöglichkeiten. Wie die Reaktion von R₂BSH mit Butyllithium zeigt, wird die Bildung von Butan neben Trialkylboran (48%) sowie eines Niederschlages beobachtet, der vermutlich ein Gemisch von R₂BSLi, LiSH und Li₂S darstellt, wobei letzteres durch Umsetzung von LiSH mit RLi entstanden sein kann.

$$R_2BSH + RLi \rightarrow R_2BSLi + RH \tag{12}$$

$$R_2BSH + RLi \rightarrow R_3B + LiSH \tag{13}$$

$$R_{2}BJ + R_{2}BJ + R_{3}B - S - BR_{3} + HJ$$
 (14)

Als Brönsted-Säure sollte R₂BSH mit R₂BJ zu R₂B--S-BR₂ kondensieren. Bei 165° werden zwar Alkan- und Schwefelwasserstoff-Entwicklung, jedoch keine Jodwasserstoffbildung festgestellt. Dies deutet darauf hin, dass R₂BJ nicht an der Reaktion beteiligt ist, was durch Kreuzungsversuche zwischen (C₄H₉)₂BSH und (C₃H₇)₂BJ auch bestätigt wird. Die bei RSH-Verbindungen leicht erfolgende Oxidation zu Disulfanen RS-SR lässt sich auf R₂BSH nicht übertragen. Der Angriff von Brom führt zur Bildung von R₂BBR, S₈ und H₂S; mit Chlorsulfanen entstehen R₂BCl, S₈ und H₂S. Dialkylselenoborsäuren reagieren schon mit Jod zu R₂BJ, Se und H₂ (Gl. 15-17).

$$2R_2BSH + Br_2 \rightarrow 2R_2BBr + 1/8S_8 + H_2S$$
 (15)

$$2R_2BSH + S_nCl_2 \rightarrow 2R_2BCl + (n+1)/8S_8 + H_2S$$
 (16)

$$2R_2BSeH + J_2 \rightarrow 2R_2BJ + 2Se + H_2$$
 (17)

Diskussion

Von den Thioborsäuren ist das H₂BSH-Molekül bindungstheoretisch recht interessant, da es nach ab initio-Rechnungen [18] eine relativ hohe Rotationsbarriere von 19.4 kcal/Mol um die B—S-Bindung besitzt. Vergleichsweise betragen die Werte für H₂BNH₂, H₂BOH und H₂BCH=CH₂ 33.3, 16.4 und 6.7 kcal/Mol. H₂BSH entsteht vermutlich bei der Umsetzung von Diboran und Schwefelwasserstoff als Primärprodukt, das sich jedoch der Isolierung durch Abspaltung von Wasserstoff und Bildung von polymerem (HBS), entzieht [19]. Als Triebkraft dieser Reaktion darf neben der H₂-Eliminierung die günstigere Absättigung des Elektronendefizits am Bor in (HBS), angesehen werden. Dies gilt auch für die irreversibel ablaufende Kondensation von Diorganylthioborsäuren oberhalb 150° unter RH-Abspaltung zu Borthiinen, die übrigens analog bei Diorganylborsäuren verläuft [20].

$$3(C_6H_5)_2BSH \xrightarrow{150^\circ} (C_6H_5BS)_3 + 3C_6H_6$$
 (18)

$$3(C_6H_5)_2BOH \xrightarrow{170^\circ} (C_6H_5BO)_3 + 3C_6H_6$$
 (19)

Um die unterschiedliche Stabilität der Monothioborsäuren aufklären zu können, sind Informationen über die Bor-Schwefel-Bindung, z. B. der Bindungsabstand, notwendig. Über R₂BSH-Verbindungen (R = Organyl) liegen noch keine Strukturuntersuchungen vor; der B-S-Abstand kann deshalb nur abgeschätzt werden. Aufgrund des Befundes, dass (CH₃)₂BSCH₃ eine relativ kurze B-S-Bindung von 1.779 Å besitzt [21], nehmen wir für die Diorganylthioborsäuren einen B-S-Bindungsabstand < 1.79 Å an.

Thermolabile Thioborsäuren besitzen hingegen eine relativ lange Bor-Schwefel-Bindung: in der Metathioborsäure (HSBS)₃ beträgt der B-SH-Bindungsabstand 1.813 Å, der die cyclische B-S-Bindung (1.803 Å) übertrifft [22]. Damit ist die B-SH-Bindung energetisch etwas ungünstiger als die B-S-Bindung in cyclischen Thioborsäuren, die, wie die Experimente gezeigt haben, leicht unter H₂S-Eliminierung kondensieren.

Aus IR-Untersuchungen [23] an den thermolabilen X_2 BSH-Verbindungen (X = Cl, Br, J) geht hervor, dass die Valenzschwingungsfrequenz ν (S- H) mit steigendem Atomgewicht des Halogens fällt: für Cl₂BSH wird 2583, für Br₂BSH 2565 und für J₂BSH 2540 cm⁻¹ gefunden. Die in der Tabelle 1 aufgeführten Werte der Monothioborsäuren liegen in einem Bereich, der von (CH₂S)₂BSH mit ν = 2530 cm⁻¹ und (CH₃)₂ BSH mit ν = 2590 cm⁻¹ begrenzt wird. Für (CH₃)₂ - BSH wurde die Valenzkraftkonstante k(BS) = 2.57 mdyn/Å berechnet [24] und mit dem Vorliegen einer B-S-Einfachbindung interpretiert.

Interessanterweise ergeben Diorganylthioborsäuren SH-Banden von sehr geringer Intensität, während bei den cyclischen Thioborsäuren äusserst starke SH-Banden auftreten. Auch in den ¹H-NMR-Spektren unterscheiden sich die Thioborsäuren in der Form der Protonensignale. Die thermostabilen Verbindungen weisen jeweils ein scharfes Singulett, die thermolabilen Thioborsäuren dagegen relativ breite Signale (4-10 Hz) auf, was auf eine starke intermolekulare Wechselwirkung hindeutet. Die Lage der Signale ist für die Diorganylthioborsäuren nahezu konstant. Von den cyclischen Thioborsäuren fällt bei o-C₆H₄O₂-BSH die Verschiebung nach hohem Feld als Folge der Wechselwirkung zweier Sauerstoffatome mit dem Bor auf.

Wie in Gl. 9 und 10 beschrieben, reagieren Organylthioborsäuren mit sich selbst sowohl unter H_2S - als auch unter Kohlenwasserstoff-Abspaltung, letztere verläuft jedoch bevorzugt ab. Dieses Reaktionsverhalten ist erstmals von Mikhailov [8] bei der Thermolyse von Dibutylthioborsäure beobachtet, jedoch nicht aufgeklärt worden. Nach unseren Untersuchungen lassen sich Mikhailovs Befunde (Bildung von H_2 , H_2S , C_4H_8 , C_4H_{10} und einer Organylbor—Schwefel-Verbindung) durch die Reaktionsschritte a-e belegen (Bu = C_4H_9).

$$3Bu_2BSH \rightarrow (BuBS)_3 + 3C_4H_{10}$$
 (a)

$$2Bu2BSH \rightarrow [Bu2B-S-BBu2] + H2S$$
 (b)

$$3[Bu_2B-S-BBu_2] \rightarrow 3Bu_3B + (BuBS)_3$$
 (c)

$$Bu_3B \to Bu_2BH + C_4H_8 \tag{d}$$

$$Bu_2BH + Bu_2BSH \rightarrow [Bu_2B-S-BBu_2] + H_2$$
 (e)

Der Zerfall von Diborylmonosulfanen nach c ist bekannt [9,10], ebenso die Umkehrung [25] der Hydroborierung nach d. Als Erklärung für das Auftreten von Wasserstoff kann ein Reaktionsablauf nach e herangezogen werden.

Im Gegensatz zu den Diorganylthioborsäuren weisen die cyclischen Thioborsäuren nur eine Reaktionsmöglichkeit auf. Infolge der günstigen elektronischen Verhältnisse am Bor bildet sich unter H_2S -Eliminierung die B-S-B-Gruppierung, wodurch monomere oder polymere Verbindungen entstehen. Eine Spaltung der B-S- oder B-O-Bindung im Ring kann aus energetischen Gründen nicht stattfinden. Thioborsäuren lassen sich, wie die Untersuchungen mit Halogenen und Chlorsulfanen gezeigt haben, nicht zu Diborylsulfanen $R_2B-S_n-BR_2$, $n \ge 2$, umsetzen. Hierbei stellt sich die Frage, ob das möglicherweise primär entstandene Produkt nicht durch freigesetztes HX wieder gespalten wird:

$$R_2B - S_n - BR_2 + 2HX \rightarrow 2R_2BX + H_2S_n$$
 (20)

$$2R_2BSR' + Br_2 \rightarrow 2R_2BBr + R'S - SR'$$
 (21)

$$2R_2BJ + R'S - SR' \rightarrow 2R_2B - SR' + J_2$$
 (22)

Da jedoch Mercaptoborane R₂BSR' mit Brom zu R₂BBr und Disulfanen abreagieren, ist auch eine direkte Spaltung der B—S-Bindung in Monothioborsäuren sehr wahrscheinlich. Dieser Reaktionsablauf wird durch das grössere Redox-Potential des Broms im Vergleich zu Schwefel ermöglicht. Mit Jod tritt bei Thioborsäuren keine Umsetzung ein, da in diesem Fall die Rückreaktion nach Gl. 22 begünstigt ist. Allerdings können Selenoborsäuren mit Jod nach Gl. 17 oxidiert werden.

Ein weiterer Unterschied zwischen den Chalkogenborsäuren besteht in der geringeren Stabilität cyclischer Selenoborsäuren, die sich (z. B. bei Umsetzung [14] von o-C₆H₄O₂BJ mit H₂Se) nicht isolieren liessen. Diorganylselenoborsäuren (s. Tabelle 1) sind dagegen relativ stabil und können destilliert werden.

Beschreibung der Versuche

Die Versuche wurden unter Luft- und Feuchtigkeitsausschluss in Stickstoffatmosphäre durchgeführt. Für die ¹H-NMR-Messungen diente ein A-60-Gerät der Fa. Varian, als Lösungsmittel wurde CS₂ verwandt. Zur Darstellung der Ausgangsverbindungen wurden die in der Literatur angegebenen Vorschriften benutzt.

Diäthylthioborsäure, (C2H5)2BSH

In 17 g (C_2H_5)₂BJ [9] (87 mMol) wurde 3 Stdn. bei Raumtemperatur H_2S eingeleitet. Die Destillation ergab 4.1 g Produkt bei 80-85° und 1.9 g (C_2H_5)₂BJ bei 105-120°. Die Redestillation der 1. Fraktion lieferte 2.64 g (C_2H_5)₂BSH (30%), Sdp. 88-89°. (Gef.: C, 47.0; H, 11.5. C_4H_{11} BS ber.: C, 47.1; H, 10.9%; Mol.-Gew., 102.0.)

Dipropylthioborsäure, $(i-C_3H_7)_2BSH$ 22.9 g $(i-C_3H_7)_2BJ$ [29] (100 mMol) reagierten mit H_2S 5 Stdn. bei 50° zu

8.8 g (i- C_3H_7)₂ BSH (68%), Sdp. 50°/11 mm. (Gef.: S, 24.2. C_6H_{15} BS ber.: S, 24.6%; Mol.-Gew., 130.1.)

Dibutylthioborsäure, $(C_4H_9)_2BSH$

Fünfstündiges Einwirken von H_2S auf 14.9 g $(C_4H_9)_2BJ$ [9] (60 mMol) bei 50° ergab 8.5 g $(C_4H_9)_2BSH$ (91%), Sdp. 21°/1 mm (Lit. 82-83°/21 mm). (Gef.: S, 19.9. $C_8H_{19}BS$ ber.: S, 20.2%; Mol.-Gew., 158.1.) Umsetzung von 19.0 g $(C_4H_9)_2BBr$ [30] (92 mMol) mit H_2S (5 Stdn. bei 135°) führte zu einem Substanzgemisch: 9.5 g, Sdp. 72-78°/11 mm und 5.2 g, Sdp. 78-135°/11 mm. Laut 1H -NMR enthielt die erste Fraktion 60% $(C_4H_9)_2BSH$ und 40% $(C_4H_9)_2BBr$. In 14.3 g $(C_4H_9)_3B$ wurde bei 130-140° 6 Stdn. H_2S eingeleitet. Das Destillat (12.9 g, Sdp. 79-92°/12 mm) enthielt etwa 30% $(C_4H_9)_2BSH$.

Diphenylthioborsäure, (C₆H₅)₂BSH

Die Umsetzung von 9.4 g (C_6H_5)₂BBr (38.4 mMol) in 20 ml CS₂ mit H₂S (10 Stdn., 20°) ergab eine ölige Flüssigkeit, Sdp. 86-87°/0.1 mm, Ausb. 5.2 g (68%). (Gef.: C, 72.8; H, 5.4; S, 15,2; Mol.-Gew. kryosk. in Benzol, 150. $C_{12}H_{11}BS$ ber.: C, 72.7; H, 5.5; S, 16.2%, Mol.-Gew. 161.7.)

Benzo-1,3-dioxa-2-thioborsaure, $o-C_6H_4O_2BSH$

Fünfstündiges Einwirken von H_2S auf 7.5 g o- $C_6H_4O_2BJ$ [9] (30.6 mMol) in 20 ml CS_2 ergab 2.6 g o- $C_6H_4O_2BSH$ (57%), Sdp. 37°/0.1 mm, Schmp. 4-6°, (Gef.: C, 47.6; H, 3.66; S, 20.0. $C_6H_5BO_2S$ ber.: C, 47.3; H, 3.29; S, 21.1%; Mol.-Gew., 152.0.)

Der Destillationsrückstand bestand aus Bis(benzodioxaborolyl)sulfan (1.7 g, Schmp. 134-136°) [9]. Die Thioborsäure spaltet langsam bei Raumtemperatur H₂S und geht in das Diborylsulfan über.

Benzo-1,3-dithia-2-thioborsäure, o-C₆H₄S₇BSH

4.0 g o-C₆H₄(SH)₂ (28.1 mMol) in 20 ml CS₂ wurden zu 11.0 g BJ₃ (28.1 mMol) in 20 ml CS₂ gegeben, wobei unter HJ-Entwicklung o-C₆H₄S₂BJ entstand. Danach wurde 30 Stdn. H₂S in die Lösung geleitet und anschliessend eine wasserklare Flüssigkeit, Sdp. 62-63°/0.1 mm, destilliert. Ausb. 2.28 g (43%) Gef.: C, 39.4; H, 2.96; S, 51.9; Mol.-Gew. kryosk. in Benzol, 175. C₆H₅B₂S₃ ber.: C, 39.1; H, 2.66; S, 52.3%; Mol.-Gew. 184.0. Als Destillationsrückstand blieben 2.2 g (47% bez. auf o-C₆H₄(SH)₂) Bis(benzo-1,3,2-dithiaborolyl)-sulfan, Sdp. 158-159°. (Gef.: C, 42.5; H, 2.50; S, 47.5; Mol.-Gew. kryosk. in Benzol 321. C₁₂H₈B₂S₅ ber.: C, 43.1; H, 2.39; S, 48.0%. Mol.-Gew. 333.9.)

1,3-Dithia-2-borolanylthiosäure, $(CH_2S)_2BSH$

Zehnstündiges Einwirken von H_2S auf 10.4 g 1,3,2-Dithiajodborolan (45.2 mMol) ergab 5.0 g (81%) einer schwach gelben, öligen Flüssigkeit. Sdp. $28^{\circ}/0.1$ mm. (Gef.: C, 17.7; H, 3.80; S, 70.6; Mol.-Gew. kryosk. in Benzol 134. $C_2H_5BS_3$ ber.: C, 17.7; H, 3.86; S, 70.7%; Mol.-Gew. 136.0.) Redestillation der Verbindung bei $102^{\circ}/14$ mm führte zu 3.3 g (CH₂S)₂BSH und 1.2 g Bis(1,3,2-dithiaborolanyl)sulfan, Schmp. 114-116° (Gef.: C, 20.3; H, 3.59; S, 66.5; Mol.-Gew. kryosk. in Benzol, 217. $C_4H_8B_2S_5$ ber.: C, 20.2; H, 3.36; S, 67.4%; Mol.-Gew. 237.9.)

Thermische Zersetzung von Dibutylthioborsäure

7.4 g (C_4H_9)₂BSH (47.0 mMol) wurden 5 Stdn. bei 165° gerührt. Es entwickelte sich ein brennbares Gas, dem H₂S beigemischt war. Die Destillation ergab 3.0 g (C_4H_9)₂BSH (40%), Sdp. 74-79°/11 mm sowie 1.3 g (C_4H_9 BS)₃ (60% bez. auf umgesetztes (C_4H_9)₂BSH) Sdp. 106-107°/1 mm. (Gef.: C, 48.2; H, 9.2; S, 31.5. $C_{12}H_{27}B_3S_3$ ber.: C, 48.0; H, 9.1; S, 32.1%.)

Umsetzung von Thioborsäuren mit Jodboranen

- (a) 5.9 g (i- C_3H_7)₂BSH (45.0 mMol) und 10.1 g (i- C_3H_7)₂BJ (45.0 mMol) wurden 3 Stdn. auf 155° erhitzt. Es entstand ein brennbares Gas, das wenig H₂S enthielt. Die Destillation ergab 11.2 g (Sdp. 53-60°/11 mm) eines Gemisches aus (i- C_3H_7)₃B, (i- C_3H_7)₂BJ und (i- C_3H_7)₂BSH sowie 0.16 g i-Propylborthiin (16%), Sdp. 74-76°/1 mm. (Gef.: C, 41.9; H, 8.2; S, 36.2; Mol.-Gew. kryosk. in Benzol 258. $C_9H_{21}B_3S_3$ ber.: C, 41.8; H, 8.2; S, 37.2%; Mol.-Gew. 257.4.)
- (b) Dreistündiges Erhitzen von je 45 mMol $(C_4H_9)_2BJ$ und $(C_4H_9)_2BSH$ auf 170° führte zur Bildung von Butan und Butylborthiin (3.0 g, 67%). HJ-Entwicklung wurde nicht beobachtet.
- (c) Die Umsetzung von 8.6 g (C_4H_9)₂BSH (54.0 mMol) mit 12.2 g (i- C_3H_7)₂BJ (54.0 mMol) bei 155° (3 Stdn.) ergab 2.1 g Butan, Dipropyljodboran und 3.3 g Butylborthiin (57%), Sdp. 105-107°/0.1 mm. (Gef.:C, 48.1; H, 8.9; S, 31.5%.)

Umsetzung von Dibutylthioborsäure mit Brom, Chlor, S₂Cl₂ und C₄H₉L₁

- (a) Brom. 6.2 g (C_4H_9)₂BSH (39.0 mMol) in 20 ml CS₂ wurden mit 3.12 g Brom (39.0 mMol) versetzt, wobei HBr- und H₂S-Entwicklung auftrat. Die Destillation ergab 7.0 g (C_4H_9)₂BBr (88%), Sdp. 74-76°/12 mm und 0.9 g Schwefel als Rückstand. (Gef.: C, 47.7; H, 10.2; Br, 38.7. C_8H_{18} BBr ber.: C, 46.2; H, 8.8; Br, 39.0%.)
- (b) Chlor. Beim langsamen Einleiten von Chlor in 4.3 g (C_4H_9)₂BSH (27.0 mMol) entstanden in exothermer Umsetzung 3.7 g (C_4H_9)₂BCl (86%) Sdp. 37-39°/2 mm. (Gef.: Cl, 21.6. C_8H_{18} BCl ber.: Cl, 21.1%.)
- (c) S_2Cl_2 . Eine Lösung von 2.3 g S_2Cl_2 (17.0 mMol) in 5 ml CS₂ wurde zu 4.5 g (C_4H_9)₂BSH (34.0 mMol) addiert. Es konnte H_2S , jedoch kein HCl im entweichenden Gas festgestellt werden. Ausb. 4.7 g (C_4H_9)₂BCl (88%) Sdp. 67-69°/12 mm. Der Rückstand enthielt 1.65 g Schwefel.
- (d) Butyllithium. Zu 7.7. g (C_4H_9)₂BSH (49.0 mMol) in 20 ml Hexan wurden bei -78° innerhalb 2 Stdn. 3.1 g C_4H_9 Li (49.0 mMol) in 25 ml Hexan addiert, wobei ein Niederschlag ausfield. Beim Auftauen des Reaktionsgemisches trat stürmische Butanentwicklung ein; der Niederschlag wurde abgetrennt und gewaschen. Aus dem Filtrat konnten 4.3 g (C_4H_9)₃B (48%), Sdp. 94-97°/12 mm, isoliert werden. Der gelbliche Niederschlag schmolz nicht bis 300°, er enthielt 23.5% C und 5.3% H neben Schwefel, Bor und Lithium.

Umsetzung von Organylthioboranen mit Brom

- (a) Zu 10.9 g (C_4H_9)₂BSCH₃ (63.0 mMol) wurden langsam 5 g Brom (32.0 mMol) getropft. Die Destillation ergab 2.5 g (CH₃S)₂ (85%) Sdp. 118-120° und 9.9 g (C_4H_9)₂BBr (74%) Sdp. 76-79°/12 mm.
- (b) Die Umsetzung von 9.5 g (C_4H_9)₂BSC₆H₅ (40.0 mMol) mit 3.2 g Brom (20.0 mMol) führte zu 7.8 g (C_4H_9)₂BBr (95%) und 4 g (C_6H_5S)₂ (92%) Schmp. 59°.

Dimethylselenoborsäure, (CH₃)₂BSeH

In 10 g Dimethyljodboran [31] (59.6 mMol) wurde 2 Stdn. H₂Se im Überschuss eingeleitet und das Reaktionsprodukt in einer nachgeschalteten Falle kondensiert. Aus 5 g Kondensat konnten 3.2 g (CH₃)₂BSeH (44%) als farblose Flüssigkeit, Sdp. 46°, erhalten werden. Wegen der Flüchtigkeit ergaben die C-, H-, und Se-Analysen infolge Einwaagefehler keine brauchbaren Analysenwerte. Das Massenspektrum bestätigt das Vorliegen der Substanz: m/e 122 (M^+ , 10), 84 (H₂Se, 58), 82 (Se, 100), 41 ((CH₃)₂B, 46).

Durch Umsetzung von 0.45 g (CH₃)₂BSeH (3.7 mMol) mit 0.29 g Pyridin (3.7 mMol) in Pentan wurden 0.35 g gelbes Addukt (47%) isoliert, das sich oberhalb 100° zersetzt. (Gef.: C, 41.7; H, 5.20; N, 6.80. C₇H₁₂BNSe ber.: C, 41.8; H, 6.52; N, 6.97%; Mol.-Gew., 199.8.)

Dibutylselenoborsäure, $(C_4H_9)_2BSeH$

In 7.0 g (C_4H_9)₂BJ wurde 2 Stdn. bei 20° H₂Se eingeleitet. Die Destillation ergab 4.1 g farbloses (C_4H_9)₂BSeH (72%), Sdp. 80°/12 mm. (Gef.: C, 48.5; H, 9.30; Se, 37.2; Mol.-Gew. kryosk. in Benzol 209. C_8H_{19} BSe ber.: C, 46.8; H, 9.27; Se, 38.5%; Mol.-Gew. 205.0.)

Diphenylselenoborsäure, $(C_6H_5)_2$ BSeH

Durch Umsetzung von 4 g (C_6H_5)₂BJ [32] (13.7 mMol) mit Selenwasserstoff wurden 1.8 g (54%) (C_6H_5)₂BSeH, Sdp. 81°/ 0.1 mm erhalten. (Gef.: C, 57.0; H, 4.64. $C_{12}H_{11}$ BSe ber.: C, 58.8; H, 4.52%; Mol.-Gew., 245.0.)

Umsetzung von (C₄H₉)₂BSeH mit Jod

Zu 2.6 g (C_4H_9)₂BSeH (12.5 mMol) wurden 2.6 g Jod (20.6 mMol) in 20 ml CS₂ getropft, wobei sich unter Selenabscheidung ein bei --196° nicht kondensierbares Gas (H_2) entwickelte. Die Destillation ergab 1.7 g jodhaltiges (C_4H_9)₂BJ, das nach Entfernen des Jods mit Hg redestilliert wurde. Ausb. 1.2 g (38%) (Gef.: J, 50.5. $C_8H_{18}BJ$ ber.: J, 50.4%.)

Dank

Dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, danken wir für die Unterstützung dieser Arbeit, der Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie für die Gewährung eines Doktoranden-Stipendiums.

Literatur

- 1 A. Stock und O. Poppenberg, Ber. Deut. Chem. Ges., 34 (1901) 399.
 - A. Stock und M. Blix, Ber. Deut. Chem. Ges., 34 (1901) 3099.
- 2 E. Wiberg und W. Sturm, Z. Naturforsch. B, 8 (1953) 529; Angew. Chem., 67 (1955) 483.
- 3 E. Wiberg und W. Sturm, Angew. Chem., 66 (1954) 60;
 - E. Wiberg und W. Suetterlin, Z. Anorg. Chem., 202 (1931) 37.
- 4 J. Bouix und R. Hillel, Canad. J. Chem., 51 (1973) 292.
- 5 S. Gurneri, Boll. Sedute Acad. Givenia Catania, 72 (1960) 667; Chem. Abstr., 58 (1963) 3091.
- 6 J. Cueilleron und R. Hillel, Bull. Soc. Chim. Fr., (1968) 3635.
- 7 R. Hillel und J. Bouix, C.R. Acad. Sci., Paris, 275 (1972) 829.
- 8 B.M. Mikhailov und Yu.N. Bubnov, Dokl. Akad. Nauk SSSR, 127 (1959) 571.

- 9 W. Siebert, E. Gast und M. Schmidt, J. Organometal. Chem., 23 (1970) 329.
- 10 H. Vahrenkamp, J. Organometal. Chem., 28 (1971) 167.
- 11 F. Riegel und W. Siebert, Z. Naturforsch, B. 29 (1974) 719.
- 12 E. Gast, Dissertation Universität Würzburg 1969.
- 13 W. Siebert, Habilitationsschrift Universität Würzburg 1971.
- 14 F. Riegel, Dissertation Universität Würzburg 1973.
- 15 D. Ulmschneider und J. Gobeau, Chem. Ber., 90 (1957) 2733.
- 16 M. Schmidt und W. Siebert, Allg. Prakt. Chem., 22 (1971) 263.
- 17 P. Hagenmueller und F. Chopin, C.R. Acad. Sci., Paris, 255 (1962) 2259; F.T. Greene, Dissertation University of Wisconsin 1961.
- 18 H.M. Seip und H.H. Jensen, Chem. Phys. Letters, 25 (1974) 209.
- A.B. Burg und R.I. Wagner, J. Amer. Chem. Soc., 76 (1954) 3307;
 J. Tanaka und A. Risch, J. Org. Chem., 35 (1970) 1015.
- 20 E.W. Abel, W. Gerrard und M.F. Lappert, J. Chem. Soc., (1958) 1451.
- 21 K. Brendhaugen, E. Wisloff Nilssen und H.M. Seip, Acta Chem. Scand., 27 (1973) 2965.
- 22 W. Schwarz, H.D. Hausen, H. Hess, J. Mandt, W. Schmelzer und B. Krebs, Acta Cryst. B, 29 (1973) 2029.
- 23 J. Bouix, M. Fouassier und M.T. Forel, J. Mol. Struct., 15 (1973) 103.
- 24 H. Vahrenkamp, J. Organometal. Chem., 28 (1971) 181.
- 25 L. Rosenblum, J. Amer. Chem. Soc., 77 (1955) 5016.
- 26 H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer Verlag, Berlin, Heidelberg, New York, 1966, S. 48.
- 27 H. Schmidbaur und W. Siebert, Chem. Ber., 97 (1964) 2090.
- 28 H. Schmidbaur und W. Siebert, Z. Naturforsch. B. 20 (1965) 596.
- 29 H. Hartmann und K.H. Birr, Z. Anorg. Allg. Chem., 299 (1959) 174.
- 30 W. Gerrard, E.F. Mooney und R.G. Rees, J. Chem. Soc., (1964) 740.
- 31 H. Nöth und H. Vahrenkamp, J. Organometal. Chem., 11 (1968) 402.
- 32 W. Siebert, M. Schmidt und E. Gast, J. Organometal. Chem., 20 (1969) 29.